skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tapas, Mahesh R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Excessive nitrate loading from agricultural runoff leads to substantial environmental and economic harm, and although hydrological models are used to mitigate these effects, the influence of various satellite precipitation products (SPPs) on nitrate load simulations is often overlooked. This study addresses this research gap by evaluating the impacts of using different satellite precipitation products—ERA5, IMERG, and gridMET—on flow and nitrate load simulations with the Soil and Water Assessment Tool Plus (SWAT+), using the Tar-Pamlico watershed as a case study. Although agricultural activities are higher in the summer, this study found the lowest nitrate load during this season due to reduced runoff. In contrast, the nitrate load was higher in the winter because of increased runoff, highlighting the dominance of water flow in driving riverine nitrate load. This study found that although IMERG predicts the highest annual average flow (120 m3/s in Pamlico Sound), it unexpectedly results in the lowest annual average nitrate load (1750 metric tons/year). In contrast, gridMET estimates significantly higher annual average nitrate loads (3850 metric tons/year). This discrepancy underscores the crucial impact of rainfall datasets on nitrate transport predictions and highlights how the choice of dataset can significantly influence nitrate load simulations. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Free, publicly-accessible full text available February 1, 2026
  3. Free, publicly-accessible full text available November 1, 2025
  4. Abstract Numerous anthropogenic activities like the construction of large dams, storages, and barrages changed the watershed characteristics impacting ecosystem health. In this study, the hydrological alterations (HAs) that have occurred in the Bhima River due to the construction of the Ujjani dam were analyzed. The hydraulic analysis is also performed to determine the hydraulic parameter and recommend the lowest flow release from the dam for improving ecosystem health. Fifty-eight years of data starting from the year 1960 to 2018 were gathered at Yadgir station, which is located downstream of the Ujjani dam. The data were divided into pre- and post-construction river flow discharge. To check for the change in the river flow regime for the post-dam construction period, HA was calculated using Flow Health Software (FHS). The results demonstrate that the dam impoundment reduces high flows primarily by storing flood flow for water supply, irrigation, etc. The velocity and depth provided by the environmental design flow for a flow health (FH) score of 0.62 give a very good habitat to fishes. A minimum release of 24.8 m3/s from the dam is recommended. This study will help policymakers mitigate the impacts of degrading ecosystem health of the Bhima River. 
    more » « less